美疾控向3州居民发警告:未来14天勿进行非必要旅行


第二种情况,没有干预措施:在有寒假和农历新年的情况下,但并未施加物理疏离措施。由于1月15日至2月10日学校放寒假,学校里没有人与人之间的接触。分别在2020年1月25日至2020年1月31日以及2020年2月1日至2月10日的期间中工作的劳动力分别为正常情况下的10%和75%;

研究者假设平均潜伏期为6.4天,平均感染期为3天或7天。每次模拟都从200或2000个传染性个体开始,其余人口处于易感状态。研究者通过Kucharski及其同事从半机械模型的R0分布的后部均匀地从R0分布的95%CI得出R0值,从而探索了模型的不确定性。

【海外网3月30日】据日本共同社30日报道,由于新冠肺炎疫情在全球不断蔓延,日本政府将拒绝美国、中国、韩国和欧洲大部分国家公民入境。

社会融合模式在各个地点(包括家庭,工作场所,学校和其他位置)有所不同。在正常情况下,在所有这些地点进行的人与人之间的接触会汇总出一个总的混合方式。因此研究者对不同地点的接触模式进行了汇总,以得出暴发前总体中的基线接触模式。在暴发流行的环境中,不同的干预策略旨在减少不同情景下的社会融合,以降低病毒在人群中的传播。为了模拟旨在减少社交融合的干预措施的效果,研究者使用这些基本模式为每种干预方案创建了综合接触矩阵。

研究者考虑了以下三种情况:

数学模型可以帮助研究者了解新冠病毒如何在整个人群中传播,并为可能减轻未来传播的控制措施提供信息。研究者使用年龄结构化的SEIR模型模拟了武汉市持续暴发COVID-19的轨迹。由于个体间的混合模式并非随机,因此会影响疾病的传播动力学。评估物理疏离干预措施(例如学校停课)有效性的模型需要考虑社会结构和个体混合中的异质性。在研究者的模型中,研究者将纳入了针对特定年龄和特定地点的社会混合模式进行了改进,以估计特定地点的物理疏离干预措施在减少暴发扩散方面的效果。为减少与学校和工作场所的接触而采取的措施正在通过为医疗保健系统提供了应对的时间和机会,以便更有力的控制疫情。因此,如果过早取消隔离限制,由于仍然有足够的易感人群,这很容易使基本传染数再次大于1,导致感染数量将会增加。实际上,干预措施应缓慢、逐步取消,一方面是为了避免感染急剧增加,另一方面是出于物流供给等实际原因。因此,研究者模拟了以交错方式逐步取消干预。浙江省卫健委3月30日发布

如果湖北武汉在4月初开始分批恢复工作,则最能保住此前增加物理距离的成果。由于该疾病具有更长的传染期,实行强力的隔离措施并在4月开始逐步解封,建模得出的感染的中位数到2020年中期能减少92%(IQR 66-97),到2020年底可减少24%(IQR 13-90),并降低了所有年龄段的人群发病率和发病高峰。这对减轻疫情暴发对医疗保健系统的压力有着重要的意义。 另外,R0值的不确定性对流行高峰的时间安排和暴发的最终规模有很大影响。

对于第三种情况,研究者模拟了严格控制措施在3月或4月初结束的不同效果,并允许在学校关闭期间分阶段重返工作(即25%劳动力在第一周和第二周工作;第三,四周工作的劳动力恢复到50%;此后100%劳动力恢复工作和上学。

对于给定的年龄段i,可以通过以下公式描述流行病转变:

研究者根据感染状况将人群分为易感性(S),暴露性(E),感染性(I)和排除(R)个体,并根据年龄分为5年范围,直至70岁,外加一个年龄段75岁及以上,总共分出16个年龄组。易感人群在接触传染性患者后,会以一个相对固定的速率被感染,随后康复或死亡。在整个传染病流行过程中,研究者假设武汉是一个封闭的系统,人口恒定为1100万(即S + E + I + R = 1100万)。研究者使用了图中所示的SEIR模型。